87 research outputs found

    A comparative study of x-ray shielding capability in ion-implanted acrylic and glass

    Get PDF
    Samples of acrylic and glass were implanted with tungsten (W) and lead (Pb) to investigate their X-ray attenuation characteristics. The near-surface composition depth profiles of ion-implanted acrylic and glass samples were studied using ion-beam analysis (Rutherford backscattering spectroscopy—RBS). The effect of implanted ions on the X-ray attenuation ability was studied using a conventional laboratory X-ray machine with X-ray tube voltages ranging from 40 to 100 kV at constant exposure 10 mAs. The results were compared with previous work on ion-implanted epoxy. As predicted, the RBS results and X-ray attenuation for both ion-implanted acrylic and glass increase with the type of implanted ions when compared to the controls. However, since the glass is denser than epoxy or acrylic, it has provided the higher X-ray attenuation property and higher RBS ion concentration implanted with a shorter range of the ion depth profile when compared to epoxy and acrylic. A prolonged time is necessary for implanting acrylic with a very high nominal dose to minimize a high possibility of acrylic to melt during the process

    FMEA of MR-Only Treatment Planning in the Pelvis

    Get PDF
    Purpose: To evaluate the implementation of a magnetic resonance (MR)-only workflow (ie, implementing MR simulation as the primary planning modality) using failure mode and effects analysis (FMEA) in comparison with a conventional multimodality (MR simulation in conjunction with computed tomography simulation) workflow for pelvis external beam planning. Methods and Materials: To perform the FMEA, a multidisciplinary 9-member team was assembled and developed process maps, identified potential failure modes (FMs), and assigned numerical values to the severity (S), frequency of occurrence (O), and detectability (D) of those FMs. Risk priority numbers (RPNs) were calculated via the product of S, O, and D as a metric for evaluating relative patient risk. An alternative 3-digit composite number (SOD) was computed to emphasize high-severity FMs. Fault tree analysis identified the causality chain leading to the highest-severity FM. Results: Seven processes were identified, 3 of which were shared between workflows. Image fusion and target delineation subprocesses using the conventional workflow added 9 and 10 FMs, respectively, with 6 RPNs \u3e100. By contrast, synthetic computed tomography generation introduced 3 major subprocesses and propagated 46 unique FMs, 15 with RPNs \u3e100. For the conventional workflow, the largest RPN scores were introduced by image fusion (RPN range, 120-192). For the MR-only workflow, the highest RPN scores were from inaccuracies in target delineation resulting from misinterpretation of MR images (RPN = 240) and insufficient management of patient- and system-level distortions (RPN = 210 and 168, respectively). Underestimation (RPN = 140) or overestimation (RPN = 192) of bone volume produced higher RPN scores. The highest SODs for both workflows were related to changes in target location because of internal anatomy changes (conventional = 961, MR-only = 822). Conclusions: FMEA identified areas for mitigating risk in MR-only pelvis RTP, and SODs identified high-severity process modes. Efforts to develop a quality management program to mitigate high FMs are underway

    Evaluation and verification of the QFix Encompass couch insert for intracranial stereotactic radiosurgery

    Get PDF
    The QFix EncompassTM stereotactic radiosurgery (SRS) immobilization system consists of a thermoplastic mask that attaches to the couch insert to immobilize patients treated with intracranial SRS. This study evaluates the dosimetric impact and verifies a vendor provided treatment planning system (TPS) model in the Eclipse TPS. A thermoplastic mask was constructed for a Lucy 3D phantom, and was scanned with and without the EncompassTM system. Attenuation measurements were performed in the Lucy phantom with and without the insert using a pinpoint ion chamber for energies of 6xFFF, 10xFFF and 6X, with three field sizes (2 Ă— 2, 4 Ă— 4, and 6 Ă— 6 cm2 ). The measurements were compared to two sets of calculations. The first set utilized the vendor provided Encompass TPS model (EncompassTPS ), which consists of two structures: the Encompass and Encompass base structure. Three HU values for the Encompass (200, 300, 400) and Encompass Base (-600, -500, -400) structures were evaluated. The second set of calculations consists of the Encompass insert included in the external body contour (EncompassEXT ) for dose calculation. The average measured percent attenuation in the posterior region of the insert ranged from 3.4%-3.8% for the 6xFFF beam, 2.9%-3.4% for the 10xFFF, and 3.3%-3.6% for the 6X beam. The maximum attenuation occurred at the region where the mask attaches to the insert, where attenuation up to 17% was measured for a 6xFFF beam. The difference between measured and calculated attenuation with either the EncompassEXT or EncompassTPS approach was within 0.5%. HU values in the EncompassTPS model that provided the best agreement with measurement was 400 for the Encompass structure and -400 for the Encompass base structure. Significant attenuation was observed at the area where the mask attaches to the insert. Larger differences can be observed when using few static beams compared to rotational treatment techniques

    Impact of MRI resolution for Linac-based stereotactic radiosurgery.

    Get PDF
    OBJECTIVE: Magnetic resonance imaging (MRI) is a standard imaging modality in intracranial stereotactic radiosurgery (SRS) for defining target volumes. However, wide disparities in MRI resolution exist, which could directly impact accuracy of target delineation. Here, sequences with various MRI resolution were acquired on phantoms to evaluate the effect on volume definition and dosimetric consequence for cranial SRS. MATERIALS/METHODS: Four T1-weighted MR sequences with increasing 3D resolution were compared, including two Spin Echo (SE) 2D acquisitions with 5mm and 3mm slice thickness (SE5mm, SE3mm) and two gradient echo 3D acquisitions (TFE, BRAVO). The voxel sizes were 0.4Ă—0.4Ă—5.0, 0.5Ă—0.5Ă—3.0, 0.9Ă—0.9Ă—1.25, and 0.4Ă—0.4Ă—0.5 mm(3), respectively. Four phantoms with simulated lesions of different shape and volume (range, 0.53-25.0 cm(3)) were imaged, resulting in 16 total sets of MRIs. Four radiation oncologists provided contours on individual MR image set. All observer contours were compared with ground truth, defined on CT image according to the absolute dimensions of the target structure, using Dice similarity coefficient (DSC), Hausdorff distance (HD), mean distance-to-agreement (MDA), and the ratio between reconstructed and true volume (Ratio(vol) ). For dosimetric consequence, SRS plans targeting observer volumes were created. The true Paddick conformity index ( CIpaddicktrue ), calculated with true target volume, was correlated with quality of observer volume. RESULTS: All measures of observer contours improved as increasingly higher MRI resolution was provided from SE5mm to BRAVO. The improvement in DSC, HD and MDA was statistically significant (p\u3c0.01). Dosimetrically, CIpaddicktrue strongly correlated with DSC of the planning observer volume (Pearson\u27s r=0.94, p\u3c0.00001). CONCLUSIONS: Significant improvement in target definition and reduced inter-observer variation was observed as the MRI resolution improved, which also improved the quality of SRS plans. Results imply that high resolution 3D MR sequences should be used to minimize potential errors in target definition, and multi-slice 2D sequences should be avoided

    Dosimetric Evaluation of Fractionated Stereotactic Radiation Therapy for Skull Base Meningiomas Using HyperArc and Multicriteria Optimization

    Get PDF
    Purpose: Treatment planning of skull based meningiomas can be difficult due to the irregular shaped target volumes and proximity to critical optic structures. This study evaluated the use of HyperArc (HA) radiosurgery optimization and delivery in conjunction with multicriteria optimization (MCO) to create conformal and efficient treatment plans for conventionally fractionated radiation therapy to difficult base-of-skull (BOS) lesions. Methods and Materials: Twelve patients with BOS meningioma were retrospectively planned with HA-specific optimization algorithm, stereotactic normal tissue objective (SRS-NTO), and conventional automatic normal tissue objective to evaluate normal brain sparing (mean dose and V20 Gy). MCO was used on both SRS-NTO and automatic normal tissue objective plans to further decrease organ-at-risk doses and target dose maximum to within clinically acceptable constraints. Delivery efficiency was evaluated based on planned monitor units. Results: The SRS-NTO in HA can be used to improve the mid- and low-dose spread to normal brain tissue in the irradiation of BOS meningiomas. Improvement in normal brain sparing can be seen in larger, more irregular shaped lesions and less so in smaller spherical targets. MCO can be used in conjunction with the SRS-NTO to reduce target dose maximum and dose to organ at risk without sacrificing the gain in normal brain sparing. Conclusions: HA can be beneficial both in treatment planning by using the SRS-NTO and in delivery efficiency through the decrease in monitor units and automated delivery

    Commissioning, clinical implementation, and initial experience with a new brain tumor treatment package on a low-field MR-linac

    Get PDF
    To evaluate the image quality, dosimetric properties, setup reproducibility, and planar cine motion detection of a high-resolution brain coil and integrated stereotactic brain immobilization system that constitute a new brain treatment package (BTP) on a low-field magnetic resonance imaging (MRI) linear accelerator (MR-linac). Image quality of the high-resolution brain coil was evaluated with the 17 cm diameter spherical phantom and the American College of Radiology (ACR) Large MRI Phantom. Patient imaging studies approved by the institutional review board (IRB) assisted in selecting image acquisition parameters. Radiographic and dosimetric evaluation of the high-resolution brain coil and the associated immobilization devices was performed using dose calculations and ion chamber measurements. End-to-end testing was performed simulating a cranial lesion in a phantom. Inter-fraction setup variability and motion detection tests were evaluated on four healthy volunteers. Inter-fraction variability was assessed based on three repeat setups for each volunteer. Motion detection was evaluated using three-plane (axial, coronal, and sagittal) MR-cine imaging sessions, where volunteers were asked to perform a set of specific motions. The images were post-processed and evaluated using an in-house program. Contrast resolution of the high-resolution brain coil is superior to the head/neck and torso coils. The BTP receiver coils have an average HU value of 525 HU. The most significant radiation attenuation (3.14%) of the BTP, occurs through the lateral portion of the overlay board where the high-precision lateral-profile mask clips attach to the overlay. The greatest inter-fraction setup variability occurred in the pitch (average 1.08 degree) and translationally in the superior/inferior direction (average 4.88 mm). Three plane cine imaging with the BTP was able to detect large and small motions. Small voluntary motions, sub-millimeter in magnitude (maximum 0.9 mm), from motion of external limbs were detected. Imaging tests, inter-fraction setup variability, attenuation, and end-to-end measurements were quantified and performed for the BTP. Results demonstrate better contrast resolution and low contrast detectability that allows for better visualization of soft tissue anatomical changes relative to head/neck and torso coil systems

    Time series analysis of electric energy consumption using autoregressive integrated moving average model and Holt Winters model

    Get PDF
    With the increasing demand of energy, the energy production is not that much sufficient and that’s why it has become an important issue to make accurate prediction of energy consumption for efficient management of energy. Hence appropriate demand side forecasting has a great economical worth. Objective of our paper is to render representations of a suitable time series forecasting model using autoregressive integrated moving average (ARIMA) and Holt Winters model for the energy consumption of Ohio/Kentucky and also predict the accuracy considering different periods (daily, weekly, monthly). We apply these two models and observe that Holt Winters model outperforms ARIMA model in each (daily, weekly and monthly observations) of the cases. We also make a comparison among few other existing analyses of time series forecasting and find out that the mean absolute percentage error (MASE) of Holt Winters model is least considering the monthly data
    • …
    corecore